

Knowledge Augmentation Services: Virtual Collections & Micro Articles

Kaylin Bugbee

Context

- Broadly speaking, there is a thirst for curated knowledge online
- Examples: Explainer YouTube video channels such as ASAP Science, Minutephysics, TedEd, etc...
- Users appreciate time and effort of putting concepts together by a trusted curator
- In the Earth sciences, "a much larger community of diverse users clamor to access, understand, and use climate data" (Overpeck et al., 2011)
- Initial user community
- Unanticipated users
- The curation and synthesis of Earth science data and related knowledge reduces effort and uncertainties for both the initial user community and unanticipated users and increases certainty of reward

Context

9/20/2016

What are virtual collections?

- Curation and special collection concept at libraries or museums
- In the digital environment, special collections have expanded and become more flexible
- Known as a virtual collection
- Curated around topic, organization or purpose
- Typically openly available
- Objects can be grouped in various way simultaneously
- The virtual collection is an Earth science data curation service that is growing in use
- Recommendation 17 from UWG requests "Create data bundles for scientists who want to study processes."
- We define a virtual collection as an end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific theme/topic or event

Use Case:

Created in collaboration with Dr. Patrick Gatlin (NASA MSFC)

Global Precipitation Measurement (GPM) mission Cold-season Precipitation Experiment (GCPEx):

Synoptic scale snow event that occurred on February 24, 2012 across southern Ontario

Resource used to identify event:

Gail Skofronick-Jackson, David Hudak, Walter Petersen, Stephen W. Nesbitt, V. Chandrasekar, Stephen Durden, Kirstin J. Gleicher, Gwo-Jong Huang, Paul Joe, Pavlos Kollias, Kimberly A. Reed, Mathew R. Schwaller, Ronald Stewart, Simone Tanelli, Ali Tokay, James R. Wang, and Mengistu Wolde, 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement's Sake, Let It Snow. Bull. Amer. Meteor. Soc., 96, 1719–1741, doi: 10.1175/BAMS-D-13-00262.1.

Use Case Data Search and Select Process -

- 1. Formulate a science question
 - a. What is the 3-D structure of falling snow and how does its variability affect remotely sensed retrievals?
- 2. What are the general keywords related to this science question that can be used to find the dataset required to help answer the question?
 - a. Remote sensing, snow
- 3. What measurements are related to these keywords and what instruments take these measurements?
 - a. Microwave remote sensing
 - a. Radar: D3R (ground), APR-2 (airborne)
 - b. Radiometer: Dual polarization radiometer (ground)
 - b. Snow particle size
 - a. Cloud microphysics probes (airborne)
 - c. Snow water equivalent
 - a. Nevzorov probe (airborne)
- 4. Which Intensive Observing Period (IOP) of the campaign was most of these measurements collected?
 - a. IOP must consist of a widespread and long duration snowfall event
 - b. IOP must consist of measurements from at least ground and airborne platforms to address spatial variability
- 5. Data was selected from above instruments

Synthesis (Implementation):

1. iPython notebook

- a. Used an iPython notebook to create a virtual collection
- Application environment which allows interactive mode using a web browser
- c. Provides a distribution URL
- d. OPeNDAP based aggregation

2. Metadata

 a. Created test metadata record for this virtual collection in NASA's Common Metadata Repository (CMR)

3. Micro Article

- a. Short, interesting document that brings together data and key science concepts
- b. Describes golden case event and relevant data

4. GHRC Publication Workflow

- a. DOI (http://dx.doi.org/10.5067/GCPEXCS/MULTIPLE/DATA101)
- b. Called 'Case Study Collection' in Hydro

Lessons Learned:

1. Search

- a. To identify a relevant event, re-visited publications, campaign blog, case study documents and other information relevant to GCPEx
- b. Science expert (Patrick) kept documentation of 'golden cases' during OLYMPEX campaign as the events took place to streamline the 'select' process at a later date when the data is published and readily available to start creating virtual collections

2. Select

- a. Metadata Quality
 - a. Temporal
 - i. Temporal information provided at collection level only missing from granule level
 - ii. Required manual selection of granules and subsetting to identified temporal period using OPeNDAP
 - b. Spatial
 - i. Spatial information provided at collection level only missing from granule level
 - ii. Required OPeNDAP to subset

Lessons Learned:

3. Synthesize

a. Data Formats

- i. To use OPeNDAP, granules need to be provided in standard formats such as HDF or netCDF
- Format translation code was required to convert non-standard granules (ASCII, XLS) to netCDF format
- iii. Note: OPeNDAP-based subsets of the data is only possible if there is a grid type defined for the parameter that we need to subset

b. Processing Levels

- i. Granules with different processing levels were served under same dataset
- ii. Parameter-based subset could not be generalized for all the granules for a dataset with same spatial and temporal constraints

c. System

i. IPython notebooks could not be directly hosted within the DAAC due to security concerns. Therefore, only a static (already executed) version of the notebook is being hosted

d. Other

i. Data bundling, Science keyword/vocabulary, Metadata creation in CMR

Discussion

- 1. Do you think virtual collections/case study collections will make finding and using data easier?
- 2. Would you be interested in collaborating with the GHRC on creating new virtual collections?

What are micro articles?

- Micro articles (Tero et al., 2008) were originally defined as academic texts which are longer than a normal abstract but may be one tenth the size of a normal journal article.
 - Focus on gaps in the scientific research process that are generally not documented, published or shared.
- We have defined a micro article as a short, interesting document that brings together data and key science concepts. These documents are curated by both Earth and data scientists.
 - Short, 1 page 'Cheat Sheets' focused on our data holdings
- Micro article types at GHRC include:
 - Physical phenomena related to the data
 - Instrument used to collect the data
 - Event or Case Study (Golden Case)
 - Summary of a cornerstone publication concerning the data
- https://ghrc.nsstc.nasa.gov/home/micro-articles

Tero, Heiskanen, Kokkonen Juhana, A Hintikka Kari, Kola Petri, Hintsa Timo, N Pirjo, and kki. 2008. "Tutkimusparvi: The Open Research Swarm in Finland." *Proceedings of the 12th International Conference on Entertainment and Media in the Ubiquitous Era*. Tampere, Finland: ACM. doi:http://doi.acm.org/10.1145/1457199.1457233.

Micro Article – Event

- Key Information Included:
 - Event description
 - Description of science behind the event
 - Spatial and Temporal coverage
 - Access to virtual collection created for the event (DOI)
 - Data recipe
 - Information on datasets included in the virtual collection including:
 - Dataset access
 - Link to guide
 - Data format information
- URL: https://ghrc.nsstc.nasa.gov/home/microarticles/snow-microphysics-event-duringgcpex-field-campaign#

Micro Article - Publication

- Key Information Included:
 - Publication Citation and DOI
 - Key Findings from the Publication
 - Science Area (GCMD science keyword(s))
 - Datasets Used or Described in the Publication. Includes:
 - Link to dataset landing page
 - Data format
 - Data recipes (if applicable)
 - Science code
- URL:

https://ghrc.nsstc.nasa.gov/home/microarticles/highlights-cecil-et-als-griddedlightning-climatology-trmm-lis-and-otd-dataset

Micro Article - Instrument

- Key Information Included:
 - Instrument description
 - Platforms
 - Measurements
 - Applications
 - Spatial resolution
 - Swath width
 - Accuracy
 - Wavelength
 - Sampling duration
 - Key datasets
 - Relevant publications
- URL: https://ghrc.nsstc.nasa.gov/home/microarticles/earth-observations-lightning-imagingsensor

Published

Weather Events

Snow Microphysics Event during GCPEx Field Campaign

Publication

Highlights from Cecil et. al.'s 'Gridded lightning climatology from TRMM-LIS and OTD: Dataset description' publication

Earth Observing Instruments

Lightning Imaging Sensor (LIS)

Upcoming

Phenomena (Type)

Lightning

Hurricanes

Publication

Highlights from Albrecht et al publication

Earth Observing Instruments

Disdrometers

Microwave radiometer

Discussion

- 1. Do you think micro articles are beneficial to the GHRC user community?
- 2. Are there other types of micro articles that you would like to see included?
- 3. Is there other key information that you would like to see included in a micro article?

